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Abstract

Even under the assumption of a sinusoidal lift and drag force at a single frequency for a stationary
cylinder in a cross flow, higher harmonics that represent non-linearity in the fluid–structure interaction
process are present. This fact is considered in the formulation of a non-linear fluid force model for a freely
vibrating cylinder in a cross flow. The force model is developed based on an iterative process and the modal
analysis approach. The fluid force components in the model can be evaluated from measured vibration data
with the help of the auto-regressive moving averaging (ARMA) technique. An example is used to illustrate
that non-linear (higher order) force components are present at resonance, even for a case with relatively
weak fluid–structure interaction. Further analysis reveals that the fluid force components are dependent on
structural damping and mass ratio. The non-linear fluid force model is further modified by taking these
considerations into account and is used to predict the dynamic characteristics of a freely vibrating cylinder
over a range of Reynolds numbers, mass and structural damping ratios. On comparison with measurements
obtained from four different experiments and predictions made by previous single-degree-of-freedom
model, good agreement is found over a wide range of these parameters.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Vortex-induced vibration of a circular cylinder is one of the fundamental problems in flow-
induced vibration. For a cylinder in a cross flow, the flow separates and vortex streets are formed
in the wake of the cylinder when the Reynolds number based on D and UN exceeds a critical
value. The vortices are alternately shed from the cylinder. This vortex shedding induces an
approximately periodic excitation on the cylinder and causes it to vibrate. The structural vibration
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modifies the flow, which in turn alters the induced force acting on the cylinder. The resulting fluid–
structure interaction is a non-linear process and will give rise to structural vibration with multiple
frequencies [1,2].
Much effort has been made to investigate the underlying mechanism of the fluid-structure

interaction resulting from vortex-induced cylinder vibration. The investigations include
experimental, numerical, empirical and theoretical studies. Empirical modelling of flow-induced
vibration has been reviewed in books [1,2] and articles [3–5]. In general, the empirical models can
be classified into two groups: one is the force decomposition model, and the other is the wake-
oscillator model. Sarpkaya [6] introduced the concept of force decomposition and used it to
analyze vortex-induced vibration of an elastically supported rigid cylinder. The fluid force was
decomposed into two components, a fluid inertia force and a fluid damping force related to the
cylinder displacement and velocity, respectively. Griffin and Koopmann [7] and Griffin [8] divided
the fluid force into an excitation part and a reaction part; the latter included all motion-dependent
force components. On the other hand, Chen et al. [9] proposed an unsteady flow theory to model
vortex-induced vibration. The fluid force was assumed to be dependent on the displacement,
velocity, and acceleration of the cylinder. This force was expressed as a linear combination of the
motion-dependent components. The component in-phase with the cylinder displacement was
treated as a fluid stiffness force, while the fluid inertia force was calculated from potential flow
theory. In all these models, data collected from free and forced vibration experiments was used to
determine the fluid force components and they were shown to be dependent on Ur and Y ; the
vibration amplitude. When the model was used to predict X and Y ; Sarpkaya [6] suggested an
iteration technique, thus allowing the fluid–structure interaction effects to be accounted for, at
least partially.
In a wake-oscillator model, a Van de Pol-type equation was invoked as the governing equation

of the lift force. This equation was coupled to the cylinder dynamic equation through one or
several terms related to the cylinder dynamics. Hartlen and Currie [10] were the first to propose
the wake-oscillator model. Their proposal was motivated by the suggestion of Bishop and Hassan
[11]. There was some mathematical basis for the Van de Pol equation. Based on a fluid dynamic
analysis, Iwan and Blevins [12] obtained a model similar to that proposed by Hartlen and Currie
[10]. The Van de Pol model was later modified by a number of researchers [13–17] in order to
obtain better agreement with experimental measurements and to replicate experimental
observations, such as the hysteresis phenomenon, the cellular vortex pattern in a shear
flow, etc.
In these empirical models, only Y was considered, and a single-degree-of-freedom (s.d.o.f.)

dynamics model was used to analyse the structural motion. In practice, however, X and Y are
coupled in any flow-induced vibration problem. Therefore, in order to obtain a better
understanding of flow-induced vibration, at least a two-degree-of-freedom (2.d.o.f.) dynamics
model should be invoked, along with a fluid force model that takes into account the fluid forces in
both the x and y directions. Furthermore, for a finite cylinder, the displacement varies along the
span, thus making the modelling of the fluid force more complicated. Skop and Griffin [18] and
Iwan [19] extended the wake-oscillator model to the case of a single elastic cylinder. Other
researchers [20, 21] used the concept of spanwise correlation to model this flow-induced vibration
problem. Beyond that, there are few studies carried out to account for the effects of spanwise
variation of X and Y :
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The present paper focuses on an empirical study, whereby a non-linear fluid force model is
sought to replicate the actual flow-induced forces experienced by a finite structure in a free
vibration case. The model attempts to account for the effects of X and Y and their variations
along the cylinder span. Even under the assumption of sinusoidal fluid forces at a single frequency
for a stationary cylinder, fluid–structure interaction introduces higher harmonics to the fluid
forces. The appearance of the higher harmonics could be accounted for by invoking the modal
analysis method and using it together with the auto-regressive moving averaging (ARMA)
technique to indirectly evaluate from measured cylinder displacements the fluid force components
in the model.
The ARMA technique was originally developed as a time-domain modal analysis method. In

this technique, a general multi-degree-of-freedom (m.d.o.f.) system is considered. The equation of
motion for this system is represented by an ARMA model, in which the current value of the
system response is expressed as a linear combination of past values of the excitation and the
response, plus a white noise. The coefficients in the model are determined so that it provides a best
fit to the measured time series in the sense of maximum likelihood. Once the coefficients are
determined, natural frequencies, damping ratios, and mode shapes can be obtained from the auto-
regressive part of the ARMA model. A more detailed description of this technique is given in Ref.
[22].
The force components thus deduced are used to predict vortex-induced vibration of a freely

vibrating long slender cylinder and the associated fluid–structure interaction. The structural
damping and mass ratio, zs and Mr; could further influence the dynamic motions of the cylinder.
Taking zs and Mr into account in the evaluation of the force components further modifies the
model. Thus formulated, it can be used to analyze flow-induced vibration problems over a wide
range of Re; zs; Mr; and Ur: Therefore, the cumbersome numerical solutions of the full set of
Navier–Stokes equations and its coupling to the structural dynamics equations could be avoided.
Finally, predictions obtained from this model are compared with experimental data and
predictions by s.d.o.f. model in the literature.

2. A fluid force model

2.1. Formulation

The free vibration of an elastically supported rigid circular cylinder in a uniform cross flow is
considered. The flow is assumed to be two dimensional when the cylinder aspect ratio is
sufficiently large. In most considerations, the cylinder is assumed to be infinitely long, therefore, a
spring–damper–mass system can be used to model the cylinder vibration in a cross-section of the
cylinder as illustrated in Fig. 1. For a cylinder with a large aspect ratio, this assumption is only
applicable in an approximate sense. The co-ordinate system is chosen so that x represents the
streamwise direction, y the transverse direction, and z the axis of the cylinder, which is vertical to
the page and not shown in the figure. The origin of the co-ordinate system is located at the center
of the cylinder.
In a force decomposition model, the fluid force is usually expressed as a sinusoidal function of

time at the vortex shedding frequency. This might be valid for a stationary cylinder as suggested
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by Bishop and Hassan [11] and supported by the analysis of Olinger and Sreenivasan [23]. They
showed that there is only one dominant frequency and that is the vortex shedding frequency. For
an oscillating cylinder, the spectrum of the wake velocity shows that sub- and super-harmonics are
also present. Experimental study of the free vibration of a single and two side-by-side elastic
cylinders in a cross flow [24,25] also showed that the frequency spectrum of the vibration
displacement includes the response peaks at higher harmonics of the shedding frequency. This is
evidence of the presence of non-linearity in the fluid–structure interaction.
For a stationary cylinder, the lift and drag force coincides with the x- and y-axis, respectively, as

shown in Fig. 1a. However, when the cylinder is vibrating as a result of vortex shedding, the lift
ðFLÞ and drag ðFDÞ forces do not coincide with the x- and y-axis, respectively, due to the relative
motion of the cylinder, as shown in Fig. 1b. The corresponding force coefficients exerted on the
cylinder can thus be expressed as

cxðtÞ ¼ cDðtÞcos y� cLðtÞsin y; ð1aÞ

cyðtÞ ¼ cDðtÞsin yþ cLðtÞcos y: ð1bÞ

The meaning of these symbols and those following are defined in Appendix A. It should be
pointed out that all force coefficients are defined with respect to r; UN; D and unit span of the
cylinder. Throughout this paper, all quantities and equations, unless otherwise specified, are made
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Fig. 1. Illustration of one cross-section of a cylinder in a cross flow and the fluid forces exerted on it: (a) stationary

cylinder, (b) vibrating cylinder.
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dimensionless with respect to UN and D: In Eqs. (1a) and (1b), y is the angle between the x-axis
and the instantaneous velocity vector of the cylinder motion and is given by

yðtÞ ¼ arctg
’YðtÞ

UN � ’XðtÞ

� �
¼ arctg

’YðtÞ
1� ’XðtÞ

� �
; ð2Þ

where the dot denotes differentiation with respect to time, t: Since, in general, ’X and ’Y are smaller
than 1, the angle y is very small and

sin yðtÞ ¼
’YðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

’Y2ðtÞ þ ð1� ’XðtÞÞ2
q E ’YðtÞ; ð3aÞ

cos yðtÞ ¼
1� ’XðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

’Y2ðtÞ þ ð1� ’XðtÞÞ2
q E1: ð3bÞ

Eq. (1) can thus be simplified to

cxðtÞ ¼ cDðtÞ � cLðtÞ ’YðtÞ; ð4aÞ

cyðtÞ ¼ cDðtÞ ’YðtÞ þ cLðtÞ: ð4bÞ

For an elastically supported rigid cylinder, a 2.d.o.f. model is assumed, therefore, the equations of
motion are given by

.XðtÞ þ 2zson0
’XðtÞ þ o2

n0X ðtÞ ¼
cxðtÞ
2Mr

; ð5aÞ

.YðtÞ þ 2zson0
’YðtÞ þ o2

n0Y ðtÞ ¼
cyðtÞ
2Mr

: ð5bÞ

Together, Eqs. (4) and (5) constitute the governing equations of the system. These equations
actually represent an iteration process as shown below.
The iteration process starts from the situation in which the cylinder is stationary. For a

stationary cylinder, FL and FD are assumed to be sinusoidal at the vortex shedding frequency fs

and at 2fs; respectively, thus, they can be written as

cDðtÞ ¼ %CD þ CD sinð2ost þ fDÞ; ð6aÞ

cLðtÞ ¼ CL sinðost þ fLÞ: ð6bÞ

where fD and fL are phase angles by which FD and FL lead the transverse displacement of the
cylinder. Since ’YðtÞ ¼ 0 for a stationary cylinder, cx ¼ cD and cy ¼ cL: Therefore,

cxðtÞ ¼ %CD0 þ CD sinð2ost þ fDÞ; ð7aÞ

cyðtÞ ¼ CL0 sinðost þ fLÞ: ð7bÞ

Using Eq. (5), the cylinder response is calculated to be Y ðtÞ ¼ Ymax sinost and X ðtÞ ¼
%X þ Xmax sinð2ost þ fX Þ; where fX is the phase angle by which X leads Y : The cylinder vibrations
will alter the fluid forces, and the effects are two-fold. Firstly, the cylinder vibrations change the
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geometry of the flow field in the fluid–structure boundary, thus altering the magnitudes of CL and
CD: Secondly, the cylinder vibrations change the angle y and alter fx and fy; as can be seen by
substituting the expression for Y ðtÞ into Eq. (4) and obtaining

cxðtÞ ¼ Cð0Þ
x þ Cð2Þ

x;m sin 2ost þ C
ð2Þ
x;d cos 2ost; ð8aÞ

cyðtÞ ¼ Cð1Þ
y;m sinost þ C

ð1Þ
y;d cosost þ Cð3Þ

y;m sin 3ost þ C
ð3Þ
y;d cos 3ost: ð8bÞ

Detailed derivation of Eq. (8) is given in Appendix B. The fluid force coefficients, Cð0Þ
x ; Cð2Þ

x;m; C
ð2Þ
x;d ;

Cð1Þ
y;m; C

ð1Þ
y;d ; C

ð3Þ
y;d ; and Cð3Þ

y;m; represent various fluid force components. For example, the subscript d
stands for fluid damping force which is related to the velocity of the cylinder, and m denotes a
combination of fluid stiffness and fluid inertia (added mass) forces which are related to the
displacement and the acceleration of the cylinder, respectively. In Appendix B are given
the expressions of these force coefficients, and it can be seen that they are functions of the
displacement amplitude, the vortex shedding frequency, and such system parameters as the
natural frequency of the combined fluid–cylinder system and the structural damping.
Compared with the fluid forces for a stationary cylinder, it can be seen that the free vibration of

an elastic cylinder introduces a 3rd harmonic to the transverse fluid force. As a result, the response
of the cylinder includes this 3rd harmonics accordingly. It can be expected that, when this
iteration process goes on as shown in Fig. 2, other higher harmonics would gradually appear in
the fluid forces, and the cylinder responses at these higher harmonics are in turn excited. The order
of the higher harmonics in the fluid forces and the cylinder vibrations is thus increased during the
iteration process. In this sense, the present model can be regarded as a marching process in the
frequency domain for the study of vortex-induced vibration problems.
When the cylinder vibrations are stable, the cylinder vibrations and the fluid forces would

asymptotically converge to

cxðtÞ ¼ Cð0Þ
x þ

XN
k¼1

Cð2kÞ
x;m sin½ð2kÞost� þ C

ð2kÞ
x;d cos½ð2kÞost�; ð9aÞ

cyðtÞ ¼
XN
k¼1

Cð2k�1Þ
y;m sin½ð2k � 1Þost� þ C

ð2k�1Þ
y;d cos½ð2k � 1Þost�; ð9bÞ
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Fig. 2. Illustration of the iteration process in which higher harmonics are gradually introduced into the fluid forces and

cylinder vibrations due to fluid–structure interaction.
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and

X ðtÞ ¼ %X þ
XN
k¼1

X ð2kÞ
max sin½ð2kÞost�; ð10aÞ

Y ðtÞ ¼
XN
k¼1

Y ð2k�1Þ
max sin½ð2k � 1Þost�: ð10bÞ

If only basic (first) harmonic components of the fluid force in Eq. (9b) are considered, the
resulting fluid force representation is in the same form as that given in Ref. [6], who used the
concept of force decomposition to deduce the force components. Mathematically, the present
representation can thus be regarded as an extension of Sarpkaya’s model to include the effects of
higher harmonics. However, the interpretation is not that simple. It should be pointed out that the
addition of higher harmonics has their physical meaning, because the appearance of the higher
harmonics arises from the coupling of the fluid flow equations with the structural dynamic
equations, or they represent the important fluid–structure interaction effect.

2.2. Extension to a finite cylinder with fix-support

Next, a more general case of a finite elastic cylinder in a cross flow is considered. The cylinder is
assumed to be a slender one fix-supported at both ends. However, its vibration is modelled by the
Euler–Bernoulli beam theory because of the finiteness of the cylinder length. The equation of
motion in dimensional form is expressed as

m
@2X ðz; tÞ

@t2
þ c

@X ðz; tÞ
@t

þ EI
@4X ðz; tÞ

@z4
¼ Fxðz; tÞ; ð11aÞ

m
@2Y ðz; tÞ

@t2
þ c

@Y ðz; tÞ
@t

þ EI
@4Y ðz; tÞ

@z4
¼ Fyðz; tÞ: ð11bÞ

Using the modal analysis approach, the equation of motion (in dimensionless form) can be written
as

.Xnðz; tÞ þ 2zsnon0
’Xnðz; tÞ þ o2

n0Xnðz; tÞ ¼
fxnðz; tÞ
2Mr

; n ¼ 1; 2;y; ð12aÞ

.Ynðz; tÞ þ 2zsnon0
’Ynðz; tÞ þ o2

n0Ynðz; tÞ ¼
fynðz; tÞ
2Mr

; n ¼ 1; 2;y; ð12bÞ

where

fxnðz; tÞ ¼ Wn zð Þ
Z L=2

�L=2
cxðz; tÞWnðzÞ dz; n ¼ 1; 2;y; ð13aÞ

fynðz; tÞ ¼ WnðzÞ
Z L=2

�L=2
cyðz; tÞWnðzÞ dz; n ¼ 1; 2;y: ð13bÞ
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The displacement and velocity of the vibrating cylinder are given by

X ðz; tÞ ¼
XN
n¼1

Xnðz; tÞ; ’Xðz; tÞ ¼
XN
n¼1

’Xnðz; tÞ; ð14aÞ

Y ðz; tÞ ¼
XN
n¼1

Ynðz; tÞ; ’Yðz; tÞ ¼
XN
n¼1

’Ynðz; tÞ: ð14bÞ

An elastically supported rigid cylinder can be regarded as a special case of the present
formulation where only the rigid-body mode exists. The rigid-body mode can be represented by
the mode of n ¼ 0 for which WnðzÞ ¼ 1 and the fluid force is uniform along the cylinder span.
However, for the present more general case, the fluid forces may not be uniform along the span.
Their variations could be represented by

cxðz; tÞ ¼
XN
p¼1

cxpðtÞWpðzÞ; ð15aÞ

cyðz; tÞ ¼
XN
p¼1

cypðtÞWpðzÞ: ð15bÞ

The modal force can then be expressed as

fxnðz; tÞ ¼ cxnðtÞWnðzÞ
Z L=2

�L=2
W 2

n ðzÞ dz ¼ cxnðtÞWnðzÞ; n ¼ 1; 2;y; ð16aÞ

fynðz; tÞ ¼ cynðtÞWnðzÞ
Z L=2

�L=2
W 2

n ðzÞ dz ¼ cynðtÞWnðzÞ; n ¼ 1; 2;y; ð16bÞ

where
R L=2
�L=2 W 2

n ðzÞ dz ¼ 1 for a normal mode.
This is equivalent to carrying out a modal analysis of the fluid forces, and it can be seen that the

modal fluid force for each mode, cxnðtÞ and cynðtÞ; n ¼ 1; 2;y; is assumed to be independent of z:
Therefore, Eqs. (9a) and (9b) can be used to approximate them for the case of an elastically
supported rigid cylinder.

3. Evaluation of fluid force components

The fluid force components in the proposed model can be evaluated by spectral analysis of the
time histories of the fluid forces. Since the fluid forces are difficult to measure in general, an
alternative way is to derive them indirectly from the measured data of cylinder vibration. Granger
[26] has developed a modal identification method for this purpose. In his method, the fluid force is
modelled as the addition of a force induced by flow turbulence and a force due to fluid-elastic
phenomenon, the latter including all motion-dependent forces. In the present paper, the fluid
force model is developed based on an iterative process simulating the fluid–structure interaction,
and the formulae for evaluating fluid force components are derived below.
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3.1. Evaluation formula

In order to determine the fluid force components from the measured cylinder displacements, a
relation between the fluid forces and the corresponding cylinder vibrations needs to be
established. Consider the cylinder vibration in the transverse direction first. Substituting Eq. (9b)
into Eq. (16b) gives

fynðz; tÞ ¼ WnðzÞ
XN
k¼1

Cð2k�1Þ
yn;m sin½ð2k � 1Þost� þ C

ð2k�1Þ
yn;d cos½ð2k � 1Þost�

( )
; n ¼ 1; 2;y: ð17Þ

The equation of motion can now be written as

.Ynðz; tÞ þ 2zsnon0
’Ynðz; tÞ þ o2

n0Ynðz; tÞ

¼
WnðzÞ
2M�

XN
k¼1

Cð2k�1Þ
yn;m sin½ð2k � 1Þost� þ C

ð2k�1Þ
yn;d cos½ð2k � 1Þost�

( )
; n ¼ 1; 2;y: ð18Þ

Noting that the cylinder response can be expressed similarly to Eq. (10b) as

Ynðz; tÞ ¼
XN
k¼1

Y ð2k�1Þ
n;max ðzÞsin½ð2k � 1Þost�; ð19Þ

the force coefficients in Eq. (18) can be derived from Eq. (12b). The results are

Cð2k�1Þ
yn;m ¼

2Mr

WnðzÞ
fo2

n0 � ½ð2k � 1Þos�2gY ð2k�1Þ
n;max ðzÞ; k; n ¼ 1; 2;y; ð20aÞ

C
ð2k�1Þ
yn;d ¼

2Mr

WnðzÞ
ð2zsnon0Þð2k � 1ÞosY

ð2k�1Þ
n;max ðzÞ; k; n ¼ 1; 2;y: ð20bÞ

Similarly, using Eq. (12a) for the streamwise vibration, the corresponding force coefficients are

Cð2kÞ
xn;m ¼

2Mr

WnðzÞ
fo2

n0 � ½ð2kÞos�2gX ð2kÞ
n;maxðzÞ; k; n ¼ 1; 2;y; ð21aÞ

C
ð2kÞ
xn;d ¼

2Mr

WnðzÞ
ð2zsnon0Þð2kÞosX

ð2kÞ
n;maxðzÞ; k; n ¼ 1; 2;y: ð21bÞ

In the above derivation, the static deformation of the cylinder due to the mean drag is neglected
since only the fluctuating part is of interest here.
In order to evaluate all the force components, the frequency of vortex shedding and the

maximum displacements of the cylinder at the shedding frequency and its harmonics for each
mode have to be known. This is carried out in two steps. Firstly, the measured cylinder vibration
is decomposed as

Y ðz; tÞ ¼
XN
n¼1

YnðtÞWnðzÞ; ð22Þ

where YnðtÞ is a series of time functions representing individual contribution of each normal mode
to the total displacement. Secondly, the power density spectrum of each modal displacement,
YnðtÞ; is calculated using the ARMA technique. From the calculated frequency spectrum, the
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angular frequency of vortex shedding, os; and the individual contributions of the cylinder
displacement at the shedding frequency and its higher order harmonics, Y ð2k�1Þ

n;max ðzÞ; k ¼ 1; 2;y;
are determined. Then, the fluid force components are deduced from Eq. (20). For the x direction,
the same procedure also applies.
It should be pointed out that this way of evaluating the force components neglects the effects of

zs and Mr: At this point, it is not clear how large these effects would be. Therefore, it is prudent to
first examine the validity of the model before making further improvements to the force
components. This will be carried out in Section 4 after the model has been validated against
several cases where experimental measurements are available, and an approach is proposed to
further improve the force components if the validation is not quite satisfactory.

3.2. An example

An example is given below to demonstrate the procedure of evaluating the fluid force
components from the measured data of cylinder vibration. The example is taken from the
experiment of So et al. [24], where the transverse vibration of a fixed–fixed elastic circular cylinder
in a cross flow was measured over a range of Re: The parameters of the fluid–structure system
used in the experiment are given in Table 1, and the readers are referred to Ref. [24] for details of
the experimental setup and measurement procedure.
Two cases in the experiment are considered in the present example; one is a resonance case with

Ur1 ¼ 4:5; another is an off-resonance case with Ur1 ¼ 16:4: Resonance is defined as the situation
where the vortex shedding frequency is approximately equal to the fundamental natural frequency
of the cylinder. In the off-resonance case, the shedding frequency is between the second and the
third natural frequencies.
The analysis of the fluid force components presented above covers the whole frequency range,

from zero to infinity. In a practical case, however, only a finite frequency range needs to be
considered, that is, k ¼ 1; 2;y; K ; and n ¼ 1; 2;y; N in Eqs. (20a) and (20b). The limits, K and
N; are determined from the analysis of the frequency spectrum of the cylinder vibration. For the
two experimental cases, the frequency spectra of the cylinder displacement, calculated using
ARMA, are plotted in Fig. 3. In the resonance case, there is only one dominant frequency. This
was identified to be the vortex shedding frequency as well as the fundamental natural frequency of
the cylinder. Several small frequency peaks were also discernable. These can be interpreted to
represent the higher harmonics of the shedding frequency and the third natural frequency of the
cylinder. The lowest frequency peak has been identified to be caused by low-frequency noise and,
therefore, should be disregarded. In the off-resonance case, the vortex shedding frequency does
not coincide with any one of the natural frequencies of the cylinder, thus four frequency peaks are

Table 1

Structural parameters of the cylinder

Material L (mm) D (mm) Mr Natural frequencies (Hz) and damping ratios (in stationary air)

Acrylic 350.0 6.0 455.0 f �
n1 ¼ 99 f �

n2 ¼ 272 f �
n3 ¼ 534 f �

n4 ¼ 883

zs1 ¼ 0:03 zs2 ¼ 0:02 zs3 ¼ 0:017 zs4 ¼ 0:01

X.Q. Wang et al. / Journal of Sound and Vibration 260 (2003) 287–305296



observed and are almost equally dominant. These peaks represent the vortex shedding frequency
and the first three natural frequencies of the cylinder, respectively. The higher harmonics of the
shedding frequency are rather small. This is expected since higher harmonics are the result of
fluid–structure interaction, which is weak in this off-resonance case.
From the above analysis of the frequency spectra of the two experimental cases, it can be

determined that only the responses of the first four normal modes need to be considered in the
present example, that is, N ¼ 4: The highest order of the higher harmonics is taken to be 7, that is,
K ¼ 4 for the resonance case, while K ¼ 1 for the off-resonance case. The fluid force components
for these two cases are then evaluated. Firstly, the components of cylinder displacement,
Y ð2k�1Þ

n;max ðzÞ; k ¼ 1; 2;y; K ; and n ¼ 1; 2;y; N; are determined. The vortex shedding frequency is
determined from the ARMA analysis and the force components are evaluated using Eqs. (20a)
and (20b). The results are listed in Tables 2 and 3.

3.3. Discussion

The total fluid force in the y direction is given by

fyðz; tÞ ¼
XN

n¼1

WnðzÞ
XK

k¼1

Cð2k�1Þ
yn;m sin½ð2k � 1Þost� þ C

ð2k�1Þ
yn;d cos½ð2k � 1Þost�

( )
; ð23Þ
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Fig. 3. Power spectral density (PSD) of the mid-span displacement of an elastic cylinder in a cross flow.

X.Q. Wang et al. / Journal of Sound and Vibration 260 (2003) 287–305 297



which is assumed to be sinusoidal at the vortex shedding frequency when the cylinder is
stationary. When the cylinder is excited by the fluid flow, the motion of the cylinder modifies the
fluid force. The effects of cylinder motion on the fluid forces are two-fold in general. Firstly,
cylinder motion might alter the lift and drag forces, their frequencies and amplitudes by changing
the pressure distribution around the cylinder. Secondly, cylinder motion might introduce higher
order harmonics to the fluid force. In the present model, FL and FD are always assumed to be
sinusoidal at a single frequency regardless of whether the cylinder is stationary or vibratory.
Under this assumption, all higher order components can be considered as due to the fluid–
structure interaction, as can be seen from the development of the model.
An analysis of the fluid force components is instructive for the understanding of fluid–structure

interaction. An example is given in which the fluid force at the mid-span of the cylinder ðz ¼ 0Þ is
analyzed. Considering the resonance case, the fluid force is expressed as

fyð0; tÞ ¼ � 0:0870 sinost þ 0:0311 cosost

� 1:7284� 10�4 sin 3ost þ 1:8314� 10�4 cos 3ost

� 0:9463� 10�4 sin 5ost þ 1:6064� 10�4 cos 5ost

� 1:3041� 10�4 sin 7ost þ 2:2365� 10�4 cos 7ost: ð24Þ

For the off-resonance case, the fluid force is expressed as

fyð0; tÞ ¼ 1:6912 sinost þ 1:7607� 10�3 cosost: ð25Þ

It can be seen that a linear expression of the fluid force is adequate for the off-resonance case and
suggests that fluid–structure interaction at off-resonance only increases the magnitude of the
originally linear fluid force but would not give rise to any significant higher order harmonics. At
resonance, however, non-linear fluid force components of odd orders are obvious, although the
amplitudes of these non-linear components are much smaller than that of the linear counterparts.
This can be attributed to the fact that both the mass ratio (Mr ¼455) and the structural damping

Table 3

Fluid force components for the off-resonance case

n ¼ 1 n ¼ 3 n ¼ 1 n ¼ 3

Cð1Þ
yn;m

�0.4266 0.2420 C
ð1Þ
yn;d 8:1598� 10�3 8:7854� 10�3

Table 2

Fluid force components for the resonance case

n ¼ 1 n ¼ 3 n ¼ 1 n ¼ 3

Cð1Þ
yn;m

0.0126 0.0529 C
ð1Þ
yn;d 0.0138 2:5433� 10�3

Cð3Þ
yn;m 2:4895� 10�5 1:0496� 10�4

C
ð3Þ
yn;d

8:1424� 10�5 1:5054� 10�5

Cð5Þ
yn;m 1:3632� 10�5 5:7466� 10�5

C
ð5Þ
yn;d

7:1419� 10�5 1:3202� 10�5

Cð7Þ
yn;m

1:3954� 10�6 5:8824� 10�5
C

ð7Þ
yn;d

9:9430� 10�5 1:8378� 10�5

X.Q. Wang et al. / Journal of Sound and Vibration 260 (2003) 287–305298



(zs1 ¼0.03, zs2 ¼0.02, and zs3 ¼0.017) in the experimental study are large, thus the resulting
cylinder displacement is small, leading to a relatively weak fluid–structure interaction.
Nevertheless, the non-linear components are clearly observed.

4. Prediction of vortex-induced vibration

The model is then used to predict vortex-induced vibration of a cylinder in three experiments,
where the measurements have been previously reported [7,27–29]. In Table 4 are listed the
parameters of the fluid–structure systems tested in these three experiments.
The measured peak values of the maximum displacement of the cylinder for these cases are

listed in Table 4, along with the predictions, designated here as Prediction 1, for comparison.
These peak values occur at around Ur ¼ 5; thus the fluid force components obtained from the
resonance case ðUr1 ¼ 4:5Þ of So et al. [24] is used in the prediction. In all three cases considered,
the predictions are smaller than the measured data. This could be attributed to the large difference
in structural parameters specified in the experiment of So et al. [24] and the three other
experiments [7,27–29]. The So et al. [24] experiment has high zs and Mr; while the other three
experiments have drastically lower values (Table 4). The values used in Ref. [24] are at least two
orders of magnitude larger than those given in the other three experiments. It is obvious that the
effects of Mr and zs cannot be accounted for properly if the fluid force components obtained from
one case is directly used to predict vibration amplitude in another case where the structural
properties are completely different.

Table 4

Comparison of present predictions with experimental results

Griffin and Koopmann [7] Brika and Laneville

[27]

Khalak and

Williamson

[28,29]

So et al. [24]

System I System II

Re 738 760 7350 6000 994

fn 0.1633 0.1587 0.1768 0.1883 0.2150

Mr 36.82 131.93 660 2.4 455

zs 0.00068 0.00033 0.00008+0.00010Y2 0.0054 0.03

dr ¼ 2pzsMr 0.1571 0.2733 0.3318 0.0817 85.7655

C
ð1Þ
y1;m

0 0 NA NA �0.0870

C
ð1Þ
y1;d

0.0501 0.0476 NA NA 0.0311

Comparison of Ymax

Measured 0.475 0.275 0.4 0.94 0.00034

Prediction 1 0.1495 0.0888 0.0679 0.2064 0.00034

Prediction 2 0.4752 0.2749 0.1468 1.0680 0.00031

Prediction 3 0.4752 0.2749 0.1482 0.7128 0.00031

Sarpkaya’s

prediction [6]

0.43 0.24 — — —
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In fact, the force components, whose expressions after the first iteration are given in Appendix
B, are shown to be dependent on the system parameters. In the forced vibration tests carried out
by Sarpkaya [6] and Chen et al. [9], the force components have been shown to depend on Y and
Ur: Since Y is mainly affected by zs and Mr; and Ur is related to Re and the fn of the cylinder, the
inability of Prediction 1 to replicate the Ymax results of the three other experiments is consistent
with their findings. Therefore, the present calculations suggest that the effects of zs and Mr have to
be accounted for in the determination of the force components.
An effort is made to account for the influence of zs and Mr in the present model. The idea is to

express the force component as a function of these parameters using available experimental data.
In the present model, the experimental data of Griffin and Koopmann [7] and So et al. [24] are
used and a second order polynomial fitting of the data is carried out.
The first step is to consider the influence of zs by constructing a relation between the force

component and zs: The resulting relation is expressed as

C
ð1Þ
y1;d ¼ ð�262:5844Þz2s þ ð7:0481Þzs þ 0:0452: ð26Þ

In turn, this relation is used to determine the force components for the model. The model is
then used to calculate the vibration amplitudes of the four cases again. The results are given in
Table 4 as Prediction 2. It can be seen that a much better prediction is obtained for most of the
cases considered with a zs varying from a low of 0:00008þ 0:0001Y 2 [27] to a high of 0.03 [24].
The revised model is able to predict fairly well the cases where zs lies in the range
0:00033ozso0:03: The most important point to note is the fact that the prediction of the So
et al. [24] case has not been compromised.
As for the effect of Mr; the second step is taken to express the force component as a function of

the reduced damping, dr ¼ 2pzsMr; which represents the effects of both zs and Mr: The resulting
relation between C

ð1Þ
y1;d and dr is expressed as

C
ð1Þ
y1;d ¼ ð2:4906� 10�4Þd2r þ ð�2:1622� 10�2Þdr þ ð5:3491� 10�2Þ: ð27Þ

This relation is used to determine the force components for the model, then to calculate the
vibration amplitudes of the four cases again. The results are given in Table 4 as Prediction 3. The
improvement of the predictions does not seem to be very significant.
Furthermore, the present model is compared with a s.d.o.f. model developed by Sarpkaya [6].

The comparison is also given in Table 4. The set of force components used in Sarpkaya’s [6] model
was expressed as a function of Y and Ur: Therefore, Sarpkaya [6] has indirectly accounted for the
effects of Mr and zs: This is why his predictions are so close to measurements. The present model
gives better predictions compared to those reported by Sarpkaya [6], but it should be noted that
the force components used are partially based on the measured data of Systems I and II. These
results are further evidence that accounting for the effects of Mr and zs is important for the
determination of the force components.
The present model is also used to calculate the variation of Ymax with Ur (reduced velocity) for

the experimental case of Khalak and Williamson [28, 29]. In the calculation, the whole regime is
divided into two sub-regimes; one is the off-resonance regime, and the other is the resonance
regime. The resonance sub-regime in the experiment spanned Ur ¼ 5211: In Fig. 4 are shown the
comparisons of experimental measurements and the predictions using the present model before
and after modification. In the model before modification, the force components obtained from the
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resonance and off-resonance cases based on the experiments of So et al. [24] are used to predict
cylinder vibrations in these two sub-regimes, respectively, designated as Prediction 1 in the figure.
The prediction of the cylinder response in the off-resonance regime agrees quite well with
experimental measurements. It is seen that the model before modification can predict the sudden
jump from the resonance regime to the off-resonance regime and gives a Ymax prediction similar to
that of the ‘lower’ branch, but fails to predict the ‘upper’ branch in the resonance regime. The
model after modification is used to predict the resonance case, designated as Predictions 2 and 3 in
the figure. It is seen that a far more reasonable prediction is obtained, particularly, the sudden
jump from the off-resonance regime to the ‘upper’ branch is reproduced. It would be interesting to
note that Prediction 3 appears to be better than Prediction 2, implying that taking into account
the influences of both Mr and zs may be advantageous for a wide range of Ur; although the
improvement may not be obvious at a single value, as seen in Table 4.
In spite of the improvement, the prediction of the lock-in regime is not quite satisfactory. This

may be partially due to the fact that the implementation of the model is based on the interpolation
of experimental data. Since the model is developed as an iteration process, an alternative way is to
update the fluid force components in each step of the iteration. However, this requires an
accumulation of a set of fluid force components as a function of vibration amplitude and shedding
frequency in both the lift and drag directions.

5. Conclusions

A non-linear fluid force model is developed for the analysis of vortex-induced vibration of a fix-
supported single cylinder in a cross flow. The vibration effects in the transverse and streamwise
directions are considered in the context of a 2.d.o.f. structural model. In the proposed model, the
lift and drag forces are assumed to be sinusoidal at fs and 2fs for a stationary cylinder,
respectively, and the fluid–cylinder interaction introduces higher harmonics. This gives rise to a
nonlinear representation of the fluid force. The model is then extended to a finite elastic cylinder
using the modal analysis approach. Therefore, the effect of vibration mode is also accounted for
in addition to the fluid–structure interaction effect.
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Fig. 4. Comparison of the predicted maximum vibration amplitude of an elastically mounted rigid cylinder in a cross

flow with experimental measurements [28,29].
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First, the model is used to evaluate fluid force components from experimental data obtained
from a freely vibrating cylinder in a cross flow. Formulae relating the fluid force components and
the vibration displacements are derived. The required amplitude and frequency data in the
formulae are calculated by carrying out a spectral analysis of the time series of structural vibration
using the ARMA technique. An example is given to demonstrate the evaluation procedure. The
fluid force results for a resonance case and an off-resonance case are presented. It is shown that
non-linear force components are present at resonance.
The model is then used to predict vortex-induced vibration of an elastic cylinder fix-supported

at both ends using the fluid force components thus deduced. This model prediction is designated
as Prediction 1. Three experimental cases previously reported [7,27–29] are calculated and
compared with the predictions of Sarpkaya [6], who used an s.d.o.f. model. The results of
Prediction 1 partially agree with experimental measurements, and the discrepancy could be
attributed to the dependence of the fluid force components on zs and Mr: In order to improve the
force model further, an attempt is made to account for the effects of Mr and zs by constructing a
relation between the fluid force components and zs and Mr: Two relations are deduced, one is
between the fluid force components and zs; and the other is between the fluid force components
and the reduced damping, dr; which includes the effects of both zs and Mr: The modified model,
designated as Predictions 2 and 3, respectively, is again used to calculate the experimental cases
considered. The results are much improved. A further comparison of the model before and after
modification with the Ymax data measured by Khalak and Williamson [28,29] for a range of Ur

also reveals good agreement. Particularly, the sudden jump at the transition points between the
off-resonance and the resonance regimes is reproduced. An iteration procedure is suggested,
which may further improve the prediction of the present model.
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Appendix A. Fluid force coefficients

Note that using Eqs. (5a), (5b), (7a) and (7b), we have Y ðtÞ ¼ Ymax sinost; then ’YðtÞ ¼
osYmax cosost: Substituting this expression into Eqs. (4a) and (4b), we have

cxðtÞ ¼ cDðtÞ � cLðtÞosYmax cosost; ðA:1aÞ

cyðtÞ ¼ cDðtÞosYmax cosost þ cLðtÞ: ðA:1bÞ

Substituting the expressions for cxðtÞ and cyðtÞ; Eqs.(7a) and (7b), into Eqs. (A.1a) and (A.1b), we
have

cxðtÞ ¼ ½ %CD þ CD sinð2ost þ fDÞ� � ½CL sinðost þ fLÞ� ½osYmax cosost�; ðA:2aÞ

cyðtÞ ¼ ½ %CD þ CD sinð2ost þ fDÞ� ½osYmax cosost� þ ½CL sinðost þ fLÞ�: ðA:2bÞ
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Expanding Eqs.(A.2a) and (A.2b), respectively, and writing the results in the form of triangular
series as

cxðtÞ ¼ Cð0Þ
x þ Cð2Þ

x;m sin 2ost þ C
ð2Þ
x;d cos 2ost; ðA:3aÞ

cyðtÞ ¼ Cð1Þ
y;m sinost þ C

ð1Þ
y;d cosost þ Cð3Þ

y;m sin 3ost þ C
ð3Þ
y;d cos 3ost: ðA:3bÞ

The coefficients are

Cð0Þ
x ¼ %CD � 1

2
CLosYmax sin fL;

Cð2Þ
x;m ¼ CD cosfD � 1

2
CLosYmax cosfL;

C
ð2Þ
x;d ¼ CD sin fD � 1

2
CLosYmax sin fL;

Cð1Þ
y;m ¼ CL cosfL þ 1

2
CDos Ymax cosfD

C
ð1Þ
y;d ¼ %CDosYmax þ CL sin fL þ 1

2
CDosYmax sin fD;

Cð3Þ
y;m ¼ 1

2CDos Ymax cosfD;

C
ð3Þ
y;d ¼ 1

2
CDosYmax sin fD;

Appendix B. Nomenclature

c damping coefficient of the cylinder
cL; cD lift and drag force coefficients
cx; cy fluid force coefficients in the streamwise and the transverse directions
%CD mean drag coefficient

CL0; CD0 lift and drag coefficients
Cð�Þ

x;m; C
ð�Þ
x;d ; fluid force components along the x direction with subscript m denoting fluid

inertia, d denoting fluid damping, and the dot represents the order of the
harmonics

Cð�Þ
y;m; C

ð�Þ
y;d fluid force components along the y direction with m; d and the dot having the same

meaning as above
EI bending stiffness of the cylinder
fL, fD dimensionless lift and drag force, respectively
fy, fx dimensionless force component along the y and x directions, respectively
fs vortex shedding frequency
f �
ni dimensional natural frequency

fxn; fyn nth modal dimensionless fluid force in the x and y direction
FL; FD dimensional lift and drag force, respectively
Fy; Fx dimensional force component along the y and x directions, respectively
m mass per unit length of the cylinder
Mr mass ratio
Re Reynolds number based on cylinder diameter and free stream velocity
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UN free stream velocity
Uri ¼
UND=f �

ni

reduced velocity, i represents the ith natural frequency

WnðzÞ the expression of mode shape of the nth normal mode
%X static displacement of the cylinder

X ; Y cylinder displacements in the streamwise and the transverse directions
’X; ’Y cylinder velocities in the streamwise and the transverse directions

Xn; Yn nth modal displacements of an elastic cylinder in the streamwise and the transverse
directions

Greek letters

y the angle between the direction of the uniform flow and the instantaneous velocity
vector of the cylinder vibration

os ¼ 2pfs angular frequency of vortex shedding
on0 ¼ 2pfn0 angular natural frequency of a stationary cylinder
fL; fD; fX phase angles
zs structural damping ratio
zsn structural damping ratio of the nth normal mode
dr reduced damping
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